

Blacktown Boys' High School 2019

HSC Trial Examination

Mathematics Extension 2

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black pen
- NESA approved calculators may be used
- A reference sheet is provided for this paper
- All diagrams are not drawn to scale
- In Questions 11 16, show relevant mathematical reasoning and/or calculations

Total marks: 100

Total marks: Section I – 10 marks (pages 3 – 7)

- Attempt Questions 1 − 10
- Allow about 15 minutes for this section

Section II - 90 marks (pages 8-15)

- Attempt Questions 11 16
- Allow about 2 hours and 45 minutes for this section

Assessor: X. Chirgwin

Student Name:	
Teacher Name:	

Students are advised that this is a trial examination only and cannot in any way guarantee the content or format of the 2019 Higher School Certificate Examination.

Office Use Only

Question		Mark
Q1		/1
Q2		/1
Q3		/1
Q4		/1
Q5		/1
Q6		/1
Q7		/1
Q8		/1
Q9		/1
Q10		/1
Q11 a)		/1
Q11 b)		/2
Q11 c)		/4
Q11 d)		/3
Q11 e)		/5
Q12 a)		/4
Q12 b)		/3
Q12 c)		/8
Q13 a)		/5
Q13 b)		/2
Q13 c)		/8
Q14 a)		/3
Q14 b)		/3
Q14 c)		/4
Q14 d)		/5
Q15 a)		/5
Q15 b)		/6
Q15 c)		/4
Q16 a)		/5
Q16 b)		/5
Q16 c)		/5
7	Γotal	/100

Section I

10 marks

Attempt Questions 1–10

Use the multiple choice answer sheet provided on page 17 for Questions 1–10.

- 1 Let z = 7 + 10i. What is the value of $i\overline{z}$?
 - A. -10 + 7i
 - B. -10 7i
 - C. 10 + 7i
 - D. 10 7i

2 Consider the Argand diagram below.

Which inequality could define the shaded area?

- A. $1 \le |z+1| \le 3$
- B. $2 \le |z+1| \le 4$
- C. $1 \le |z 1| \le 3$
- D. $2 \le |z 1| \le 4$

3 What are the equations of the asymptotes of the hyperbola $9y^2 - 25x^2 = 225$?

$$A. \qquad y = \pm \frac{25}{9} x$$

$$B. y = \pm \frac{9}{25}x$$

C.
$$y = \pm \frac{5}{3}x$$

$$D. y = \pm \frac{3}{5}x$$

4 The sum of the eccentricities of two different conics is $\frac{3}{2}$.

Which pair of the conics could this be?

- A. Circle and ellipse
- B. Circle and parabola
- C. Parabola and hyperbola
- D. Hyperbola and circle

5 Which of the following parametric equations represent $3(x-5)^2 + 4y^2 = 12$

A.
$$x = 2\cos\theta + 5, y = \sqrt{3}\sin\theta$$

B.
$$x = 2\cos\theta - 5, y = \sqrt{3}\sin\theta$$

C.
$$x = \sqrt{3}\cos\theta + 5, y = 2\sin\theta$$

D.
$$x = 3\cos\theta + 5, y = 4\sin\theta$$

6 Given that f(x) = |x| and g(x) = x.

Which of the following statement is true for the graph shown above?

- A. $y = \frac{f(x)}{g(x)}$
- B. $y = -\frac{f(x)}{g(x)}$
- C. $y = f(x) \times g(x)$
- D. $y = -f(x) \times g(x)$

7 The Argand diagram below shows the complex number *z*.

Which Argand diagram best represents $\frac{2z}{i}$?

A.

В.

C.

D.

- There are 9 identical boxes on a table. One person comes to the table and takes three boxes. 2 more people do the same as the first person.

 How many ways can this happen?
 - A. 362880
 - B. 60480
 - C. 3360
 - D. 1680

The following diagram shows the graph y = P'(x), the derivative of a polynomial P(x). P'(x) has roots at x = a and x = b where a < 0 and b > 0.

If c is a root of P(x), where c > b. Which of the following could be P(x)?

A.
$$P(x) = (x - a)^3(x - c)$$

B.
$$P(x) = (x - a)^3(x + c)$$

C.
$$P(x) = (x + a)^3(x - c)$$

D.
$$P(x) = (x + a)^3(x + c)$$

- 10 Given that a is a constant, which of the following is equivalent to $\int_0^a x(a-x)^{99} dx$?
 - A. $\frac{a}{100}$
 - B. $\frac{a}{101}$
 - C. $\frac{a^{100}}{10000}$
 - D. $\frac{a^{101}}{10100}$

End of Section I

Section II

90 Marks

Attempt Questions 11–16

Answer each question on a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11–16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.

a) Simplify
$$i^{2019}$$
.

1

b) Sketch
$$\frac{x^2}{9} + \frac{y^2}{25} = 1$$
, indicating the coordinates of its foci and equations of the directrices.

c)

i) Express
$$\sqrt{2} - \sqrt{6}i$$
 in modulus-argument form.

2

ii) Hence evaluate
$$(\sqrt{2} - \sqrt{6}i)^8$$
 in the form $x + iy$.

2

d) Evaluate
$$\int_{2}^{4} \sqrt{16 - x^2} dx$$

3

i) Find the domain and range of
$$f(x) = x \sin^{-1} x$$
.

2

ii) Determine whether
$$f(x)$$
 is even, odd, or neither.

1

iii) Sketch
$$y = f(x)$$
, showing clearly the end values.

2

End of Questions 11

Question 12 (15 marks) Use a SEPARATE writing booklet.

- a) Given that $P(x) = x^5 + 6x^4 + 16x^3 + 32x^2 + 48x + 32$.
 - i) Show that x = -2 is a root of P(x) of multiplicity three. 2
 - ii) Hence, or otherwise, factorise P(x) completely into linear factors. 2
- b) Use the substitution $t = \tan \frac{x}{2}$, or otherwise, show that $\int_0^{\frac{\pi}{2}} \frac{dx}{2 + \sin x} = \frac{\sqrt{3}\pi}{9}$
- The function $f(x) = (x-3)^2 e^{x-1}$ has stationary points at x = 1 and x = 3 as shown in the diagram below.

Draw separate half-page sketches of the following graphs. In each case, label any asymptotes and the coordinates of any turning points.

$$i) y = f(|x|) 2$$

$$y = \frac{1}{f(x)}$$

iii)
$$y = [f(x)]^2$$
 2

iv)
$$y^2 = f(x)$$
 2

Question 13 (15 marks) Use a SEPARATE writing booklet.

- a) The equation $x^3 5x + 25 = 0$ has roots α , β and γ . Find:
 - i) the polynomial with roots $-\alpha$, $-\beta$, $-\gamma$.
 - ii) the polynomial with roots α^2 , β^2 , γ^2 .
 - iii) the value of $\alpha^3 + \beta^3 + \gamma^3$.
- b) In the Argand diagram below, intervals AB, OP and OQ are equal in length, OP is parallel to AB and $\angle POQ = \frac{\pi}{2}$. If A and B represent the complex number 1 + 3i and 7 + 5i respectively, find the complex number which is represented by Q.

Question 13 continues on page 11

Question 13 (continued)

c) In the diagram $P(cp, cp^{-1})$ and $Q(cq, cq^{-1})$ where $0 , are points on the hyperbola <math>xy = c^2$.

M is the midpoint of PQ and the line PQ cuts the x-axis at A. OM cuts the hyperbola at T.

- i) Show that gradient of OM is $-1 \times$ gradient of MA.
- ii) Hence, or otherwise, show that OM = MA.
- Show that the tangent to the hyperbola at T is parallel to the chord PQ.
- iv) Find the coordinates of R and S where the tangent to the hyperbola at T cuts the x and y axes respectively.
- v) Prove that the area of the triangle *ORS* is a constant.

Question 14 (15 marks) Use a SEPARATE writing booklet.

a) The region bounded by the curve $\sqrt{x} + \sqrt{y} = 2$ and the x-axis between x = 0 and x = 4 is rotated about the line x = 4.

i) Use the method of cylindrical shells to show that the volume *V* of the solid formed is given by:

$$V = 2\pi \int_0^4 (16 - 16\sqrt{x} + 4x\sqrt{x} - x^2) dx$$

1

2

- ii) Hence find the exact volume V.
- b) A solid has ellipse $16x^2 + 49y^2 = 784$ as its base. If each section perpendicular to the major axis is an equilateral triangle, find the volume of this solid.
- c) A eleven-member Wellbeing Committee consists of five students, four teachers, and two parents. The committee meets around a circular table.
 - i) How many different arrangements of the eleven members around the table are possible if the students sit together as a group and so do the teachers, but no teacher sits next to a student?
 - ii) One student and one parent are related. Given that all arrangements in part i) are equally likely, what is the probability that these two members sit next to each other?

Question 14 (continued)

- d) i) By considering $\left(\sqrt{x} \frac{1}{\sqrt{x}}\right)^2$, where x > 0, prove that the sum of a positive real number and its reciprocal is never less than 2, and is only equal to 2 when x = 1.
 - ii) Hence, or otherwise, find the smallest value of $(a + b)\left(\frac{1}{a} + \frac{1}{b}\right)$ 3 where a and b are positive real numbers. For what values of a and b does this minimum value occur?

Question 15 (15 marks) Use a SEPARATE writing booklet.

- A particle of mass 3 kg moves under the action of a force F so that the velocity is given by $v = 10\sqrt{4 x^2} \ ms^{-1}$.
 - i) Find the force F in terms of the displacement x.
 - ii) If the particle is initially 2 metres to the right of the origin. Find the displacement of the particle at any time t.
- b) A particle of mass m falls from rest under gravitational acceleration g ms^{-2} and air resistance proportional to the speed v ms^{-1} . If the constant of proportionality is k.
 - i) Explain why the acceleration is g kv for this particle. 1
 - ii) Find the velocity of the particle at time t.
 - iii) Find the terminal velocity.
 - iv) Express the distance the particle has fallen at time t in terms of t.
- c) Given that $I_{2n+1} = \int_0^1 x^{2n+1} e^{x^2} dx$, where n is a positive integer.
 - i) Show that $I_{2n+1} = \frac{1}{2}e nI_{2n-1}$.
 - ii) Hence, or otherwise, evaluate $\int_0^1 x^3 e^{x^2} dx$.

End of Questions 15

Question 16 (15 marks) Use a SEPARATE writing booklet.

- a) A sequence $u_1, u_2, u_3, u_4, \dots$ satisfies the relationship $u_n = u_{n-1} + u_{n-2}$ for $n \ge 3$.
 - i) Show that $u_1u_2 + u_2u_3 = u_3^2 u_1^2$.
 - ii) For $n \ge 1$, use mathematical induction to show that $u_1u_2 + u_2u_3 + u_3u_4 + \dots + u_{2n-1}u_{2n} + u_2u_{2n+1} = u_{2n+1}^2 u_1^2$
- b) The triangle ABC is inscribed in a circle. From an external point D, tangents are drawn to the circle, touching it at A and C. The chord ED is drawn parallel to BC, meeting AB at F and AC at G. The line CF is produced to meet the circle at H.

- i) Prove that AFCD is a cyclic quadrilateral.
- ii) Prove that HF = AF.

2

c) i) If $8x + 4y = \pi$, show that $1 - 2 \tan x - \tan^2 x$

$$\tan y = \frac{1 - 2\tan x - \tan^2 x}{1 + 2\tan x - \tan^2 x}$$

ii) Hence deduce that $\tan \frac{\pi}{8}$ is a root of the equation $t^2 + 2t - 1 = 0$, and find the exact value of $\tan \frac{\pi}{8}$.

End of Paper

	2019 Mathematics Extension 2 AT4 Trial So	lutions
Section 1		
1		1 Mark
2	C Circle centre at $(1,0)$, inner circle radius 1 and outer circle radius 3 $1 \le z-1 \le 3$	1 Mark
3	c $9y^2 - 25x^2 = 225$ $\frac{y^2}{25} - \frac{x^2}{9} = 1$ Asymptotes: $y = \pm \frac{5}{3}x$	1 Mark
4	Circle has $e=0$ Ellipse has $e<1$ Parabola has $e=1$ Hyperbola has $e>1$ $e=\frac{3}{2}$ Circle and ellipse $e<1$ Circle and parabola $e=1$ Parabola and hyperbola $e>2$ Hyperbola and circle $e>1$ \therefore Hyperbola and circle could be the pair	1 Mark
5	A $x = 2\cos\theta + 5, y = \sqrt{3}\sin\theta$ Sub into $3(x - 5)^2 + 4y^2 = 12$ LHS = $3(2\cos\theta + 5 - 5)^2 + 4(\sqrt{3}\sin\theta)^2$ LHS = $12\cos^2\theta + 12\sin^2\theta$ LHS = 12 LHS = RHS	1 Mark
6	$y = -\frac{ x }{x}$ $y = -\frac{f(x)}{g(x)}$	1 Mark
7	C $2z$ is doubling the length of z and then dividing by i indicates rotating it clockwise by $\frac{\pi}{2}$, so the resulting vector should be in the 4 th quadrant.	1 Mark

8	First person can select 3 out of 9 boxes = 9C_3 ways Second person can select 3 out of 6 remaining boxes = 6C_3 ways Last person can select the remaining 3 presents in 1 way = 3C_3 way Number of ways = ${}^9C_3 \times {}^6C_3 \times 1 = 1680$	1 Mark
9	A $P'(x)$ has a double root at $x = a$, so $P(x)$ could have a triple root at $x = a$ and a turning point at $x = b$, and given that $x = c$ is a root of $P(x)$ to the right of b . $\therefore P(x) = (x - a)^3 (x - c)$ is the possible solution	1 Mark
10	$ \int_{0}^{a} x(a-x)^{99} dx $ $ = \int_{0}^{a} (a-x)x^{99} dx $ $ = \int_{0}^{a} (ax^{99} - x^{100}) dx $ $ = \left[\frac{ax^{100}}{100} - \frac{x^{101}}{101} \right]_{0}^{a} $ $ = \left(\frac{a \times a^{100}}{100} - \frac{a^{101}}{101} \right) - 0 $ $ = \left(\frac{a^{101}}{100} - \frac{a^{101}}{101} \right) $ $ = \left(\frac{101a^{101}}{10100} - \frac{100a^{101}}{10100} \right) $ $ = \frac{a^{101}}{10100} $	1 Mark

Section 2		
Q11 a)	$i^{2019} = i^{2016} \times i^{3} = (i^{4})^{504} \times i^{2} \times i = 1 \times (-1) \times i = -i$	1 Mark Correct solution
Q11 b)	$\frac{x^{2}}{9} + \frac{y^{2}}{25} = 1$ $a = 3, b = 5$ $a^{2} = b^{2}(1 - e^{2})$ $9 = 25(1 - e^{2})$ $\frac{9}{25} = 1 - e^{2}$ $e^{2} = 1 - \frac{9}{25}$ $e^{2} = \frac{16}{25}$ $e = \frac{4}{5}$ Foci: $(0, \pm 4)$ Directrices: $y = \pm \frac{25}{4}$	2 Marks Correct graph with all key features shown clearly 1 Mark Obtains the correct value of eccentricity
Q11 c) i)	$ \sqrt{2} - \sqrt{6}i = \sqrt{(\sqrt{2})^2 + (\sqrt{6})^2}$ $ \sqrt{2} - \sqrt{6}i = 2\sqrt{2}$ $\arg(\sqrt{2} - \sqrt{6}i) = \tan^{-1}\left(\frac{-\sqrt{6}}{\sqrt{2}}\right)$ $\arg(\sqrt{2} - \sqrt{6}i) = -\frac{\pi}{3}$ $\sqrt{2} - \sqrt{6}i = 2\sqrt{2}\left(\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)\right)$ $\sqrt{2} - \sqrt{6}i = 2\sqrt{2}\left(\cos\frac{\pi}{3} - i\sin\frac{\pi}{3}\right)$	2 Marks Correct solution 1 Mark Correct modulus or argument
Q11 c) ii)	$(\sqrt{2} - \sqrt{6}i)^8 = \left[2\sqrt{2}\left(\cos\frac{\pi}{3} - i\sin\frac{\pi}{3}\right)\right]^8$ Using De Moivre's theorem $(\sqrt{2} - \sqrt{6}i)^8 = (2\sqrt{2})^8 \left(\cos\frac{8\pi}{3} - i\sin\frac{8\pi}{3}\right)$ $(\sqrt{2} - \sqrt{6}i)^8 = (2\sqrt{2})^8 \left(-\frac{1}{2} - i \times \frac{\sqrt{3}}{2}\right)$ $(\sqrt{2} - \sqrt{6}i)^8 = 2^{12} \left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right)$ $(\sqrt{2} - \sqrt{6}i)^8 = -2^{11} (1 + \sqrt{3}i) \text{ or } -2048 (1 + \sqrt{3}i)$	2 Marks Correct solution 1 Mark Applies De Moivre's theorem correctly

	T 4	
Q11 d)	$I = \int_2^4 \sqrt{16 - x^2} dx$	3 Marks Correct solution
	Let $x = 4\cos\theta$ $dx = -4\sin\theta \ d\theta$	2 Marks Finds a correct primitive
	$x = 4, \qquad \theta = 0$ $x = 2, \qquad \theta = \frac{\pi}{3}$	1 Mark Uses correct trigonometric substitution
	$I = \int_{\frac{\pi}{3}}^{0} \sqrt{16 - 16\cos^{2}\theta} \times -4\sin\theta d\theta$	
	$I = 16 \int_{0}^{\frac{\pi}{3}} \sqrt{1 - \cos^2 \theta} \times \sin \theta d\theta$	
	$I = 16 \int_{0}^{\frac{\pi}{3}} \sin^2 \theta \ d\theta$	
	$I = \frac{16}{2} \int_0^{\frac{\pi}{3}} (1 - \cos 2\theta) d\theta$	
	$I = 8 \left[\theta - \frac{1}{2} \sin 2\theta \right]_0^{\frac{\pi}{3}}$	
	$I = 8\left[\frac{\pi}{3} - \frac{1}{2}\sin\left(2 \times \frac{\pi}{3}\right) - 0\right]$ $I = 8\left[\frac{\pi}{3} - \frac{\sqrt{3}}{4}\right]$	
	$I = \frac{8\pi}{3} - 2\sqrt{3}$	
Q11 e) i)	$f(x) = x \sin^{-1} x$	2 Marks
Q== 3/1/		Correct solution
	Domain: $-1 \le x \le 1$	1 Mark Correct domain or range
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	For $-1 \le x < 0$, $y = x$ is negative, $y = \sin^{-1} x$ is also negative, so	
	$x \sin^{-1} x$ must be positive.	
	For $0 < x \le 1$, $y = x$ is positive, $y = \sin^{-1} x$ is also positive, so $x \sin^{-1} x$ must be positive.	
	For $x = 0$, $y = x$ is zero, $y = \sin^{-1} x$ is also zero, so $x \sin^{-1} x$ must be zero.	
	Range: $0 \le y \le \frac{\pi}{2}$	
Q11 e) ii)	$f(x) = x \sin^{-1} x$ $f(-x) = (-x) \times \sin^{-1}(-x)$ $f(-x) = (-x) \times -\sin^{-1} x$ $f(-x) = x \sin^{-1} x$ $f(x) = f(-x)$	1 Mark Correct solution
	f(x) is an even function	

Q11 e) iii)	∫y	2 Marks
,,	, y	Correct sketch
	π / 2 -2 -1 0 1 2	1 Mark Sketch shows $f(x)$ is even with correct domain and range
Q12 a) i)	$P(x) = x^{5} + 6x^{4} + 16x^{3} + 32x^{2} + 48x + 32$ $P'(x) = 5x^{4} + 24x^{3} + 48x^{2} + 64x + 48$ $P''(x) = 20x^{3} + 72x^{2} + 96x + 64$	2 Marks Correct solution 1 Mark
	$P''(-2) = 20(-2)^{3} + 72(-2)^{2} + 96(-2) + 64$ $P''(-2) = 0$ $P'(-2) = 5(-2)^{4} + 24(-2)^{3} + 48(-2)^{2} + 64(-2) + 48$ $P'(-2) = 0$ $P(-2) = (-2)^{5} + 6(-2)^{4} + 16(-2)^{3} + 32(-2)^{2} + 48(-2) + 32$ $P(-2) = 0$	Show that $P''(-2) = 0$
	$\therefore x = -2 \text{ is a root of multiplicity 3.}$	
Q12 a) ii)	Roots of $P(x)$ are $\alpha, \beta, -2, -2, -2$	2 Marks Correct solution
	Sum of roots: $\alpha + \beta + (-2) + (-2) + (-2) = -6$ $\alpha + \beta = 0$	1 Mark Finds product and sum of remaining two roots
	Product of roots: $\alpha\beta \times (-2)^3 = -32$ $\alpha\beta = 4$ Let α and β are the solutions to $x^2 - (\alpha + \beta)x + \alpha\beta = 0$	
	$x^{2} + 4 = 0$ $x = \pm 2i$ $\therefore P(x) = (x+2)^{3}(x-2i)(x+2i)$	
Q12 b)	$t = \tan\frac{x}{2}$ $\frac{dt}{dx} = \frac{1}{2}\sec^2\frac{x}{2}$ $\frac{dt}{dx} = \frac{1}{2}\left(1 + \tan^2\frac{x}{2}\right)$ $\frac{dt}{dx} = \frac{1}{2}(1 + t^2)$	3 Marks Correct solution 2 Marks Finds a correct primitive 1 Mark
	$dx = \frac{2dt}{1+t^2}$ $x = \frac{\pi}{2}, t = 1$ $x = 0, t = 0$ $\sin x = \frac{2t}{1+t^2}$	Attempts to obtain an integral in terms of t

	$\int_{0}^{\frac{\pi}{2}} \frac{dx}{2 + \sin x}$ $= \int_{0}^{1} \frac{1}{2 + \frac{2t}{1 + t^{2}}} \times \frac{2dt}{1 + t^{2}}$ $= \int_{0}^{1} \frac{1 + t^{2}}{2 + 2t^{2} + 2t} \times \frac{2dt}{1 + t^{2}}$ $= \int_{0}^{1} \frac{dt}{t^{2} + t + 1}$ $= \int_{0}^{1} \frac{dt}{t^{2} + t + \frac{1}{4} + \frac{3}{4}}$ $= \int_{0}^{1} \frac{dt}{\left(t + \frac{1}{2}\right)^{2} + \left(\frac{\sqrt{3}}{2}\right)^{2}}$ $= \left[\frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{t + \frac{1}{2}}{\sqrt{3}}\right)\right]_{0}^{1}$ $= \left[\frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{2t + 1}{\sqrt{3}}\right)\right]_{0}^{1}$ $= \frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{2 \times 1 + 1}{\sqrt{3}}\right) - \frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{2 \times 0 + 1}{\sqrt{3}}\right)$ $= \frac{2}{\sqrt{3}} \tan^{-1} \sqrt{3} - \frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{1}{\sqrt{3}}\right)$ $= \frac{2}{\sqrt{3}} \times \frac{\pi}{3} - \frac{2}{\sqrt{3}} \times \frac{\pi}{6}$ $= \frac{\pi}{3\sqrt{3}}$ $= \frac{\sqrt{3}\pi}{9}$	
Q12 c) i)	y = f(x) 6 y 5 4 -4 -3 -2 -1 0 1 2 3 4	2 Marks Correct sketch 1 Mark Recognises reflection along the <i>y</i> -axis
Q12 c) ii)	$y = \frac{1}{f(x)}$ $\begin{array}{c} 6 \\ y \\ 5 \\ 4 \\ \hline \\ -5 \\ -4 \\ -3 \\ -2 \\ -1 \\ \end{array}$	2 Marks Correct sketch 1 Mark Recognises and labels the asymptote

Q12 c) iii)	$y = [f(x)]^{2}$ $16 y$ 14 12 10 8 6 4 -4 -3 -2 -1 0 1 2 3 4	2 Marks Correct sketch 1 Mark Correct key points shown
Q12 c) iv)	$y^{2} = f(x)$ $6 y$ 5 4 3 2 1 -1 -2 -3 -4 -5	2 Marks Correct sketch 1 Mark Correct key points shown
Q13 a) i)	$x^{3} - 5x + 25 = 0$ Let $x = -\alpha$ $\alpha = -x$ $(-x)^{3} - 5(-x) + 25 = 0$ $-x^{3} + 5x + 25 = 0$ $x^{3} - 5x - 25 = 0$	1 Mark Correct solution
Q13 a) ii)	$x^{3} - 5x + 25 = 0$ Let $x = \alpha^{2}$ $\alpha = \pm \sqrt{x}$ $(\pm \sqrt{x})^{3} - 5(\pm \sqrt{x}) + 25 = 0$ $\pm \sqrt{x}(x - 5) = -25$ $x(x - 5)^{2} = 625$ $x(x^{2} - 10x + 25) = 625$ $x^{3} - 10x^{2} + 25x - 625 = 0$	2 Marks Correct solution 1 Mark Recognises the relationships of the roots and makes the correct substitution

Q13 a) iii)	$x^3 - 5x + 25 = 0$	2 Marks
	$\alpha^3 - 5\alpha + 25 = 0 (1)$	Correct solution
	$\beta^{3} - 5\beta + 25 = 0 (2)$ $\gamma^{3} - 5\gamma + 25 = 0 (3)$	1 1 1 1 2 2 2
	$\gamma^3 - 5\gamma + 25 = 0$ (3)	1 Mark Recognises the
	(1) + (2) + (3)	relationships of the
	$\alpha^{3} + \beta^{3} + \gamma^{3} - 5(\alpha + \beta + \gamma) + 25 \times 3 = 0$	roots and makes the
	$\alpha^{3} + \beta^{3} + \gamma^{3} = 5(\alpha + \beta + \gamma) - 75$	correct substitution
	$\alpha^3 + \beta^3 + \gamma^3 = -75$	
Q13 b)	$\overrightarrow{AB} = (7+5i) - (1+3i)$	2 Marks
	$\overrightarrow{AB} = 6 + 2i$	Correct solution
	→	1 Mark
	$\overrightarrow{OP} = 6 + 2i$	Finds the complex
	$\overrightarrow{OQ} = i\overrightarrow{OP}$	number that represent
	$\overrightarrow{OQ} = i(6+2i)$	P
	$\overrightarrow{OQ} = -2 + 6i$	
Q13 c) i)	(2 Marks
Q13 c/ 1/	$M \left(\frac{cp + cq}{p} + \frac{\overline{p} + \overline{q}}{\overline{q}} \right)$	Correct solution
	$M\left(\frac{cp+cq}{2}, \frac{\frac{c}{p}+\frac{c}{q}}{2}\right)$ $M\left(\frac{c}{2}(p+q), \frac{c}{2}\left(\frac{p+q}{pq}\right)\right)$	
	$\begin{pmatrix} c & c & (n+a) \end{pmatrix}$	1 Mark
	$M\left(\frac{c}{2}(p+q), \frac{c}{2}\left(\frac{p+q}{nq}\right)\right)$	Finds the gradient of
	2 2 1 1 1	OM or MA
	c(p+q)	
	$\frac{1}{m} = \frac{2}{2} \left(\frac{pq}{pq} \right) = 0$	
	$\frac{m_{OM}-c}{2}(p+q)-0$	
	1	
	$m_{OM} = \frac{\frac{c}{2} \left(\frac{p+q}{pq}\right) - 0}{\frac{c}{2} (p+q) - 0}$ $m_{OM} = \frac{1}{pq}$	
	$m_{MA} = m_{PQ}$	
	$m_{MA} = rac{\dfrac{c}{p}-\dfrac{c}{q}}{\dfrac{cp-cq}{pq}}$	
	$m_{MA} = \frac{p - q}{r}$	
	$\begin{array}{c} cp - cq \\ q - p \end{array}$	
	$m_{MA} = rac{rac{q-p}{pq}}{p-q}$	
	$m_{MA} = p - q$	
	$m_{MA} = -rac{1}{pq}$	
	pq	
	_ 1	
	$-1 \times m_{MA} = \frac{1}{pq}$	
	$\therefore m_{OM} = -1 \times m_{OM}$	
Q13 c) ii)	$tan \angle MOA = m_{OM}$	1 Mark
, ,	1	Correct solution
	$\tan \angle MOA = \frac{1}{pq}$	
	$\tan x MAx = m$	
	$\frac{m - m_A}{1}$	
	$\tan \angle MAx = m_{MA}$ $\tan \angle MAx = -\frac{1}{pq}$	
	$\angle MAx = \pi - \angle MOA$ $\therefore \angle MAO = \angle MOA$	
	··· ZIMO – ZMON	
	$\therefore OM = MA$ (equal sides opposite equal angles in a triangle)	

Q13 c) iii)	Equation of OM	2 Marks Correct solution
	$y = \frac{1}{pq}x$	Correct solution
	T is the intersection point of OM and hyperbole $m = a^2$	1 Mark
	T is the intersection point of OM and hyperbola $xy = c^2$	Find the x value of T
	$x \times \frac{1}{pq}x = c^2$	
	$x^2 = c^2 pq$	
	$x = c\sqrt{pq}$	
	$y = c^2 x^{-1}$	
	$y = c^2 x^{-1}$ $\frac{dy}{dx} = -c^2 x^{-2}$	
	At $x = c\sqrt{pq}$	
	Gradient of tangent at T $-c^2$	
	$m_T = \frac{1}{\left(c \sqrt{nq}\right)^2}$	
	$m_T = \frac{-c^2}{\left(c\sqrt{pq}\right)^2}$ $m_T = -\frac{1}{pq}$	
	$m_T = -\frac{1}{pq}$	
	$m_T = m_{PQ}$	
	\therefore tangent at T is parallel to chord PQ .	
Q13 c) iv)	At T	2 Marks
	$x = c\sqrt{pq}$	Correct solution
	$y = \frac{c\sqrt{pq}}{mq}$	1 Mark
	pq	Finds the equation of
	Equation of tangent at T	tangent at T
	$c\sqrt{pq}$ 1 .	
	$y - \frac{c\sqrt{pq}}{pq} = -\frac{1}{pq}(x - c\sqrt{pq})$	
	$pqy - c\sqrt{pq} = -x + c\sqrt{pq}$	
	$x + pqy - 2c\sqrt{pq} = 0$	
	At R , $y = 0$	
	$x = 2c\sqrt{pq}$	
	$R(2c\sqrt{pq},0)$	
	At S , $x = 0$	
	$pqy - 2c\sqrt{pq} = 0$	
	$y = \frac{2c\sqrt{pq}}{pq}$	
	pq	
	$S\left(0, \frac{2c\sqrt{pq}}{pq}\right)$	
Q13 c) v)	1 200 200	1 Mark
	$A = \frac{1}{2} \times OR \times OS$	Correct solution
	$A = \frac{1}{2} \times 2c\sqrt{pq} \times \frac{2c\sqrt{pq}}{pq}$	
	$A = 2c^2$ pq	
	\therefore Area of triangle ORS is a constant since c is a constant.	
		1

Q14 d) i)	$(1)^2$ 1	2 Marks
م ت م ا	$\left(\sqrt{x} - \frac{1}{\sqrt{x}}\right) = x - 2 + \frac{1}{x}$	Correct solution
	$\left \left(\sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 \right \ge 0$	1 Mark
	$\begin{vmatrix} \sqrt{x^2} \\ x - 2 + \frac{1}{x} \ge 0 \end{vmatrix}$	Deduce $x + \frac{1}{x} \ge 2$
	$\left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)^2 = x - 2 + \frac{1}{x}$ $\left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)^2 \ge 0$ $x - 2 + \frac{1}{x} \ge 0$ $x + \frac{1}{x} \ge 2$	
	Hence the sum of a positive number and its reciprocal is never less than 2.	
	If $x = 1$, then $x + \frac{1}{x} = 2$	
044 11 "1	(1 1) a b	2.04
Q14 d) ii)	$(a+b)\left(\frac{1}{a} + \frac{1}{b}\right) = \frac{a}{b} + \frac{b}{a} + 2$	3 Marks Correct solution
	$Let A = \frac{a}{b}$ $\frac{1}{A} = \frac{b}{a}$	2 Marks Show that the minimum value is 4
		1 Mark
	Using Part i)	Shows
	$\begin{vmatrix} A + \frac{1}{A} \ge 2 \\ a & b \end{vmatrix}$	$\frac{a}{b} + \frac{b}{a} \ge 2$
	$\left \frac{\ddot{b}}{b} + \frac{\ddot{a}}{a} \ge 2\right $	
	$\begin{vmatrix} \frac{a}{b} + \frac{h}{a} \ge 2 \\ \frac{a}{b} + \frac{b}{a} + 2 \ge 4 \end{vmatrix}$	
	$\therefore (a+b)\left(\frac{1}{a} + \frac{1}{b}\right) \ge 4$	
	Hence the minimum value is 4 and this minimum value occurs when $a=b.$	
Q15 a) i)	$v = 10\sqrt{4 - x^2}$	2 Marks
	$v = 10(4 - x^2)^{\frac{1}{2}}$	Correct solution
	$\begin{vmatrix} \ddot{x} = v \frac{dv}{dx} = 10(4 - x^2)^{\frac{1}{2}} \times 10 \times \frac{1}{2} \times -2x \times (4 - x^2)^{-\frac{1}{2}} \\ \ddot{x} = -100x \end{vmatrix}$	1 Mark Expresses acceleration in terms of displacement
	Or	
	$\frac{1}{2}v^2 = \frac{1}{2} \times \left(10(4 - x^2)^{\frac{1}{2}}\right)^2$	
	$\frac{1}{2}v^2 = 50(4 - x^2)$	
	$\left \frac{d}{dx} \left(\frac{1}{2} v^2 \right) \right = 50 \times -2x$	
	$\frac{dx}{dx}\left(\frac{1}{2}v^2\right) = -100x$	
	$F = m\ddot{x}$ $F = -300x$	

		T = ·
Q15 a) ii)	$v = \frac{dx}{dt} = 10(4 - x^2)^{\frac{1}{2}}$	3 Marks Correct solution
	$\frac{dt}{dx} = \frac{1}{10(4 - x^2)^{\frac{1}{2}}}$ $t = \int \frac{1}{10(4 - x^2)^{\frac{1}{2}}} dx$ $t = \frac{1}{10} \int \frac{1}{\sqrt{4 - x^2}} dx$ $t = \frac{1}{10} \sin^{-1} \frac{x}{2} + C$	2 Marks Finds the correct value of <i>C</i> 1 Mark Expresses <i>t</i> as a primitive function in terms of <i>x</i>
	When $x = 2$, $t = 0$ $0 = \frac{1}{10} \sin^{-1} \frac{2}{2} + C$ $C = -\frac{\pi}{20}$	
	$t = \frac{1}{10}\sin^{-1}\frac{x}{2} - \frac{\pi}{20}$ $t + \frac{\pi}{20} = \frac{1}{10}\sin^{-1}\frac{x}{2}$ $10t + \frac{\pi}{2} = \sin^{-1}\frac{x}{2}$ $\frac{x}{2} = \sin\left(10t + \frac{\pi}{2}\right)$ $\therefore x = 2\sin\left(10t + \frac{\pi}{2}\right)$	
Q15 b) i)	Take O as the point of release of the particle P . Take motion downwards as positive. There are two forces acting on P : its weight force acting downwards and its resistance of mkv acting upwards. $O = \int_{-mkv}^{mkv} \int_{-mg}^{mkv} \int_{-mg}^{mkv} \int_{-mg}^{mkv} \int_{-mg}^{mg} \int_{-mg}^{mg}$	1 Mark Correct solution
Q15 b) ii)	$\frac{dv}{dt} = g - kv$ $\frac{dt}{dv} = \frac{1}{g - kv}$ $t = \int \frac{1}{g - kv} dv$ $t = -\frac{1}{k} \ln(g - kv) + C$	2 Marks Correct solution 1 Mark Find the primitive function of t in terms of v with correct constant value

	$t = 0, v = 0$ $0 = -\frac{1}{k} \ln g + C$	
	$C = \frac{1}{\nu} \ln g$	
	$C = \overline{k} \ln g$	
	$t = -\frac{1}{k}\ln(g - kv) + \frac{1}{k}\ln g$	
	, n	
	$t = \frac{1}{k} \ln \left(\frac{g}{g - kv} \right)$	
	$kt = \ln\left(\frac{g}{g - kv}\right)$	
	$kt = \ln\left(\frac{g}{g - kv}\right)$ $e^{kt} = \frac{g}{g - kv}$	
	$\frac{g - kv}{g} = \frac{1}{e^{kt}}$	
	$g = e^{kt}$ $a - kv - ae^{-kt}$	
	$g - kv = ge^{-kt}$ $-kv = ge^{-kt} - g$ $kv = g(1 - e^{-kt})$	
	$\begin{cases} kv = g(1 - e^{-kt}) \\ g \\ -kt \end{cases}$	
	$v = \frac{g}{k}(1 - e^{-kt})$	
Q15 b) iii)	$t \to \infty, e^{-kt} \to 0$	1 Mark Correct solution
	$v \rightarrow \frac{g}{L}(1-0)$	
	$\begin{vmatrix} v \to \frac{g}{k}(1-0) \\ v \to \frac{g}{k} \end{vmatrix}$	
	k	
Q15 b) iv)	$dx = g_{(x_1, \dots, y_t)}$	2 Marks
	$\frac{dx}{dt} = \frac{g}{k} \left(1 - e^{-kt} \right)$	Correct solution
	$x = \frac{g}{k} \int (1 - e^{-kt}) dt$	1 Mark
	1 3	Find the primitive function
	$x = \frac{g}{k} \left[t + \frac{1}{k} e^{-kt} \right] + C$	Tanction
	t=0, x=0	
	$0 = \frac{g}{k} \left[0 + \frac{1}{k} e^0 \right] + C$	
	$C = -\frac{g}{k^2}$	
	ar 1 1 a	
	$x = \frac{g}{k} \left[t + \frac{1}{k} e^{-kt} \right] - \frac{g}{k^2}$	
	$x = \frac{g}{k} \left(t + \frac{1}{k} e^{-kt} - \frac{1}{k} \right)$	
Q15 c) i)	$I_{2n+1} = \int_0^1 x^{2n+1} e^{x^2} dx$	3 Marks
	$\int_{0}^{12n+1} - \int_{0}^{1} x = ux$	Correct solution
	$u = x^{2n}$ $u' = 2nx^{2n-1}$ $v' = xe^{x^2}$ $v = \frac{1}{2}e^{x^2}$	2 Marks
	$ x'-2mx^2n^{-1}$ $ x-x ^2$	Applies integration by
	$u = 2nx$ $v = \frac{1}{2}e^{-x}$	parts correctly
	$u = 2nx$ $v = \frac{1}{2}e^{x}$	parts correctly

	$I_{2n+1} = \int_0^1 x^{2n} \times x e^{x^2} dx$	1 Mark Correctly identifies u
	$I_{2n+1} = \left[x^{2n} \times \frac{1}{2}e^{x^2}\right]_0^1 - \int_0^1 2nx^{2n-1} \times \frac{1}{2}e^{x^2} dx$	and v^\prime and finds corresponding u^\prime and v
	$I_{2n+1} = \left[\left(1^{2n} \times \frac{1}{2} e^1 \right) - 0 \right] - n \int_0^1 x^{2n-1} e^{x^2} dx$	
	$I_{2n+1} = \frac{1}{2}e - nI_{2n-1}$	
Q15 c) ii)	$I_{3} = \int_{0}^{1} x^{3} e^{x^{2}} dx$ $I_{3} = \frac{1}{2} e - 1 \times I_{1}$	1 Marks Correct solution
	$I_1 = \int_0^1 x e^{x^2} dx$	
	$I_1 = \left[\frac{1}{2}e^{x^2}\right]_0^1$	
	$I_1 = \left[\frac{1}{2}e^1 - \frac{1}{2}e^0\right]_0^1$	
	$I_1 = \frac{1}{2}(e-1)$	
	$I_3 = \frac{1}{2}e - 1 \times \frac{1}{2}(e - 1)$ $I_3 = \frac{1}{2}$	
	$I_3 = \frac{1}{2}$	
Q16 a) i)	$u_n = u_{n-1} + u_{n-2} u_3 = u_2 + u_1$	1 Mark Correct solution
	$u_2 = u_3 - u_1$	
	$u_1u_2 + u_2u_3$	
	$= u_2(u_1 + u_3) = (u_3 - u_1)(u_3 + u_1)$	
	$= u_3^2 - u_1^2$	
Q16 a) ii)	$u_1u_2 + u_2u_3 + u_3u_4 + \dots + u_{2n-1}u_{2n} + u_{2n}u_{2n+1} = u_{2n+1}^2 - u_1^2$	4 Marks Correct solution
	1. Prove statement is true for $n=1$	
	$LHS = u_1 u_2 + u_2 u_3$ $RHS = u_{2 \times 1 + 1}^2 - u_1^2$	3 Marks Makes significant
	$RHS = u_{2\times 1+1} - u_{1}$ $RHS = u_{3}^{2} - u_{1}^{2}$	progress in the body of
	$u_1u_2 + u_2u_3 = u_3^2 - u_1^2$ (proven in part i)) LHS = RHS	proof
	\therefore statement is true for $n=1$	2 Marks Correct $k + 1$
	2. Assume statement is true for $n=k$	statement
	$u_1u_2 + u_2u_3 + u_3u_4 + \dots + u_{2k-1}u_{2k} + u_{2k}u_{2k+1} = u_{2k+1}^2 - u_1^2$	1 Mark
	3. Prove statement is true for $n = k + 1$	Prove initial statement
	i.e. $(u_1u_2 + u_2u_3 + u_3u_4 + \dots + u_{2k-1}u_{2k} + u_{2k}u_{2k+1}) + u_{2k+1}u_{2k+2} + u_{2k+2}u_{2k+3} = u_{2k+3}^2 - u_1^2$	is true
	$LHS = (u_1u_2 + u_2u_3 + u_3u_4 + \dots + u_{2k-1}u_{2k} + u_{2k}u_{2k+1}) + u_{2k+1}u_{2k+2} + u_{2k+2}u_{2k+3}$	
	$LHS = u_{2k+1}^2 - u_1^2 + u_{2k+2}(u_{2k+1} + u_{2k+3}) $ (from step 2)	

	Since $u_n = u_{n-1} + u_{n-2}$ $u_{2k+3} = u_{2k+2} + u_{2k+1}$ $u_{2k+2} = u_{2k+3} - u_{2k+1}$ $LHS = u_{2k+1}^2 - u_1^2 + (u_{2k+3} - u_{2k+1})(u_{2k+3} + u_{2k+1})$ $LHS = u_{2k+1}^2 - u_1^2 + u_{2k+3}^2 - u_{2k+1}^2$ $LHS = u_{2k+3}^2 - u_1^2$ $LHS = u_{2k+3}^2 - u_1^2$ $LHS = RHS$ $\therefore \text{ statement is true by mathematical induction for all } n \geq 1$	
Q16 b) i)	E F G D	2 Marks Correct solution 1 Mark Makes significant progress
	$\angle CAD = \angle ABC$ (Alternate segment theorem) $\angle ABC = \angle AFD$ (corresponding angles are equal, $ED \parallel BC$) AD = CD (tangents from an external point are equal in length) $\angle CAD = \angle ACD$ (angles opposite equal sides of $\triangle ACD$ are equal) $\therefore \angle AFD = \angle ACD$ Since angles in the same segment are equal $\therefore AFCD$ is a cyclic quadrilateral	
Q16 b) ii)	Join HA $E \qquad F \qquad G$ $B \qquad C$	3 Marks Correct solution 2 Marks Shows $\Delta HFA \Delta CFB$ 1 Marks Shows $\angle FBC = \angle FCB$
	Since $AFCD$ is a cyclic quadrilateral $\angle DAC = \angle DFC$ (angles in the same segment are equal) $\angle FCB = \angle DFC$ (alternate angles are equal, $ED \parallel BC$) Since $\angle FBC = \angle FCB$ (proven above that $\angle CAD = \angle ABC$) $\therefore \Delta FBC$ is an isosceles triangle $\angle HAB = \angle HCB$ (angles in the same segment) $\angle AHC = \angle ABC$ (angles in the same segment) $\therefore \Delta HFA \parallel \Delta CFB$ (equiangular) $\therefore \Delta HFA$ is also an isosceles triangle $\therefore HF = AF$ (equal sides of isosceles triangle)	

Q16 c) i)	$\begin{cases} 8x + 4y = \pi \\ \pi \end{cases}$	2 Marks
	$y = \frac{\pi}{4} - 2x$	Correct solution
		1 Mark
	$\tan y = \tan\left(\frac{\pi}{4} - 2x\right)$	Finds
		$\tan y = \frac{1 - \tan 2x}{1 + \tan 2x}$
	$\tan y = \frac{\tan\frac{\pi}{4} - \tan 2x}{1 + \tan\frac{\pi}{4}\tan 2x}$	$1 + \tan 2x$
	$1 + \tan \frac{\pi}{4} \tan 2x$ $1 - \tan 2x$	
	$\tan y = \frac{1 - \tan 2x}{1 + \tan 2x}$	
	$\tan y = \frac{1 - \tan \frac{4x}{2x}}{1 + \tan 2x}$ $\tan y = \frac{1 - \frac{2 \tan x}{1 - \tan^2 x}}{1 + \frac{2 \tan x}{1 - \tan^2 x}}$	
	$\tan y = \frac{1 - \tan^2 x}{2 \tan x}$	
	$1 + \frac{2 \tan x}{1 - \tan^2 x}$	
	$\tan y = \frac{\frac{1 - \tan^2 x}{1 - \tan^2 x}}{\frac{1 - \tan^2 x}{1 - \tan^2 x + 2 \tan x}}$	
	$\tan y = \frac{1 - \tan^2 x}{1 - \tan^2 x + 2 \tan x}$	
	1 +2	
	$\tan y = \frac{1 - \tan^2 x}{1 - \tan^2 x - 2 \tan x}$	
	$1 - \tan^2 x + 2 \tan x$	
Q16 c) ii)	If $y = 0$	3 Marks
	$0 = \frac{\pi}{1 - 2x}$	Correct solution
	$0 = \frac{\pi}{4} - 2x$ $x = \frac{\pi}{8}$	
	$x = \frac{1}{8}$	2 Marks
	$_{2}\pi$ π	Deduce $\tan \frac{\pi}{8}$ is a root
	$\tan 0 = \frac{1 - \tan^2 \frac{\pi}{8} - 2 \tan \frac{\pi}{8}}{1 - \tan^2 \frac{\pi}{8} + 2 \tan \frac{\pi}{8}}$	and finds the values of t
	$1-\tan^2\frac{\pi}{8}+2\tan\frac{\pi}{8}$	1 Mark
	$1 - \tan^2 \frac{\pi}{8} - 2 \tan \frac{\pi}{8} = 0$	Deduce $\tan \frac{\pi}{8}$ is a root of
	8 8	the equation
	Let $t = \tan \frac{\pi}{2}$	
	8	
	$1 - t^2 - 2t = 0$	
	$t^2 + 2t - 1 = 0$	
	$\frac{\pi}{2}$ must a root of of $\frac{\pi}{2}$ $\frac{\pi}{2}$	
	$\therefore \tan \frac{\pi}{8} $ must a root of of $t^2 + 2t - 1 = 0$	
	$-2 + \sqrt{2^2 - 4 \times 1 \times (-1)}$	
	$t = \frac{-2 \pm \sqrt{2^2 - 4 \times 1 \times (-1)}}{2 \times 1}$ $t = \frac{-2 \pm \sqrt{8}}{2}$	
	$-2 \pm \sqrt{8}$	
	$t = \frac{1}{2}$	
	$t = -1 \pm \sqrt{2}$	
	π	
	$\tan\frac{\pi}{8} > 0$	
	π –	
	$\therefore \tan \frac{\pi}{8} = -1 + \sqrt{2}$	